login
9th-power analog of Keith numbers.
9

%I #25 Jun 24 2021 00:06:23

%S 1,54,71,81,196,424,451,2394,9057,51737,52141,104439,227914,228088,

%T 1019555,1096369,1202713,1687563,1954556,3332130,3652731,4177592,

%U 31669012,79937731,81478913,148341053,168763202,182573136,342393476,773367191,1450679282,2914657310,3282344153

%N 9th-power analog of Keith numbers.

%C Like Keith numbers but starting from n^9 digits to reach n.

%C Consider the digits of n^9. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to n.

%e 196^9 = 426878854210636742656:

%e 4 + 2 + 6 + 8 + 7 + 8 + 8 + 5 + 4 + 2 + 1 + 0 + 6 + 3 + 6 + 7 + 4 + 2 + 6 + 5 + 6 = 100;

%e 2 + 6 + 8 + 7 + 8 + 8 + 5 + 4 + 2 + 1 + 0 + 6 + 3 + 6 + 7 + 4 + 2 + 6 + 5 + 6 + 100 = 196.

%p with(numtheory): P:=proc(q, h,w) local a, b, k, t, v; global n; v:=array(1..h);

%p for n from 1 to q do b:=n^w; a:=[];

%p for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;

%p for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^w)+1;

%p t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1);

%p od; if v[t]=n then print(n); fi; od; end: P(10^6,10000,9);

%t (* function keithQ[ ] is defined in A007629 *)

%t a281920[n_] := Join[{1}, Select[Range[10, n], keithQ[#, 9]&]]

%t a281920[10^6] (* _Hartmut F. W. Hoft_, Jun 03 2021 *)

%Y Cf. A007629, A246544, A263534.

%Y Cf. A274769, A274770, A281915, A281916, A281917, A281918, A281919, A281921.

%K nonn,base

%O 1,2

%A _Paolo P. Lava_, Feb 02 2017

%E a(24) from _Jinyuan Wang_, Feb 02 2020

%E a(25)-a(33) from _Giovanni Resta_, Feb 03 2020