login
A281888
T(n,k)=Number of nXk 0..1 arrays with no element equal to more than four of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
6
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 68, 0, 0, 0, 0, 638, 638, 0, 0, 0, 0, 4832, 9284, 4832, 0, 0, 0, 0, 35002, 112320, 112320, 35002, 0, 0, 0, 0, 241209, 1282388, 2156646, 1282388, 241209, 0, 0, 0, 0, 1612568, 13907664, 38763782, 38763782, 13907664, 1612568, 0, 0
OFFSET
1,13
COMMENTS
Table starts
.0.0........0...........0.............0...............0.................0
.0.0........0...........0.............0...............0.................0
.0.0.......68.........638..........4832...........35002............241209
.0.0......638........9284........112320.........1282388..........13907664
.0.0.....4832......112320.......2156646........38763782.........663476572
.0.0....35002.....1282388......38763782......1091754188.......29340232714
.0.0...241209....13907664.....663476572.....29340232714.....1239784258612
.0.0..1612568...146131060...10998070526....763669110112....50762954675186
.0.0.10566034..1503637694..178432948526..19447316121332..2032908127837419
.0.0.68136376.15223224224.2848000336302.487171820681716.80080573259154704
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1)
k=3: [order 14] for n>17
k=4: [order 46] for n>49
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1. .0..1..1..0. .0..0..0..1. .0..1..1..1. .0..0..1..1
..1..1..1..0. .1..0..0..0. .1..0..1..1. .1..0..1..0. .0..1..1..1
..1..0..0..1. .0..0..1..0. .1..0..1..0. .1..0..0..0. .1..1..0..1
..1..0..0..0. .1..1..0..0. .0..1..1..1. .0..1..0..1. .0..1..0..0
CROSSREFS
Sequence in context: A279798 A191941 A087536 * A282338 A198210 A329061
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 01 2017
STATUS
approved