login
A281815
Expansion of f(x, x^10) in powers of x where f(, ) is Ramanujan's general theta function.
4
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
f(x,x^m) = 1 + Sum_{k>=1} x^((m+1)*k*(k-1)/2) (x^k + x^(m*k)). - N. J. A. Sloane, Jan 30 2017
Euler transform of period 22 sequence [1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, ...].
Characteristic function of generalized 13-gonal numbers A195313.
G.f.: Sum_{k in Z} x^(k*(11*k + 9)/2).
G.f.: Product_{k>0} (1 + x^(11*k-10)) * (1 + x^(11*k-1)) * (1 - x^(11*k)).
Sum_{k=1..n} a(k) ~ (2*sqrt(2/11)) * sqrt(n). - Amiram Eldar, Jan 13 2024
EXAMPLE
G.f. = 1 + x + x^10 + x^13 + x^31 + x^36 + x^63 + x^70 + x^106 + x^115 + ...
G.f. = q^81 + q^169 + q^961 + q^1225 + q^2809 + q^3249 + q^5625 + q^6241 + ...
MATHEMATICA
a[ n_] := SquaresR[ 1, 88 n + 81] / 2;
a[ n_] := If[ n < 0, 0, Boole @ IntegerQ @ Sqrt @ (88 n + 81)];
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^11] QPochhammer[ -x^10, x^11] QPochhammer[ x^11], {x, 0, n}];
PROG
(PARI) {a(n) = issquare(88*n + 81)};
CROSSREFS
Cf. A195313.
Sequence in context: A016394 A016335 A016373 * A353633 A205988 A167700
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 30 2017
STATUS
approved