login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281810 Expansion of Sum_{i>=1} x^(i*(i+1)/2) / (1 - Sum_{j>=1} x^(j*(j+1)/2))^2. 1
1, 2, 4, 8, 14, 25, 45, 77, 131, 224, 377, 629, 1049, 1738, 2863, 4708, 7716, 12598, 20524, 33363, 54102, 87567, 141489, 228216, 367538, 591098, 949372, 1522917, 2440190, 3905747, 6245198, 9976535, 15923083, 25392755, 40462155, 64426278, 102510580, 162997910, 259010672, 411328655, 652842792, 1035591110 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Total number of parts in all compositions (ordered partitions) of n into nonzero triangular numbers (A000217).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..5238

Index to sequences related to polygonal numbers

Index entries for sequences related to compositions

FORMULA

G.f.: Sum_{i>=1} x^(i*(i+1)/2) / (1 - Sum_{j>=1} x^(j*(j+1)/2))^2.

EXAMPLE

a(6) = 25 because we have [6], [3, 3], [3, 1, 1, 1], [1, 3, 1, 1], [1, 1, 3, 1], [1, 1, 1, 3], [1, 1, 1, 1, 1, 1] and 1 + 2 + 4 + 4 + 4 + 4 + 6 = 25.

MAPLE

b:= proc(n) option remember; `if`(n=0, [1, 0], add(

(p-> p+[0, p[1]])(b(n-j*(j+1)/2)), j=1..isqrt(2*n)))

end:

a:= n-> b(n)[2]:

seq(a(n), n=1..55); # Alois P. Heinz, Aug 07 2019

MATHEMATICA

nmax = 42; Rest[CoefficientList[Series[Sum[x^(i (i + 1)/2), {i, 1, nmax}]/(1 - Sum[x^(j (j + 1)/2), {j, 1, nmax}])^2, {x, 0, nmax}], x]]

nmax = 42; Rest[CoefficientList[Series[(2 x^(1/8) EllipticTheta[2, 0, Sqrt[x]] - 4 x^(1/4))/(4 x^(1/8) - EllipticTheta[2, 0, Sqrt[x]])^2, {x, 0, nmax}], x]]

CROSSREFS

Cf. A000217, A023361.

Sequence in context: A164152 A164390 A164151 * A199925 A164388 A164389

Adjacent sequences: A281807 A281808 A281809 * A281811 A281812 A281813

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jan 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 02:30 EST 2022. Contains 358572 sequences. (Running on oeis4.)