login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281809 Expansion of Sum_{i>=1} x^(i^3) / (1 - Sum_{j>=1} x^(j^3))^2. 1
1, 2, 3, 4, 5, 6, 7, 9, 13, 19, 27, 37, 49, 63, 79, 99, 126, 163, 213, 279, 364, 471, 603, 766, 970, 1229, 1562, 1992, 2545, 3251, 4144, 5266, 6672, 8435, 10655, 13462, 17019, 21527, 27230, 34425, 43478, 54846, 69114, 87032, 109555, 137889, 173543, 218393, 274765, 345544, 434332, 545650, 685187, 860105, 1079402 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Total number of parts in all compositions (ordered partitions) of n into cubes (A000578).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10919

Index entries for sequences related to sums of cubes

Index entries for sequences related to compositions

FORMULA

G.f.: Sum_{i>=1} x^(i^3) / (1 - Sum_{j>=1} x^(j^3))^2.

EXAMPLE

a(10) = 19 because we have [8, 1, 1], [1, 8, 1], [1, 1, 8], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and 3 + 3 + 3 + 10 = 19.

MAPLE

b:= proc(n) option remember; `if`(n=0, [1, 0], add(

      (p-> p+[0, p[1]])(b(n-j^3)), j=1..iroot(n, 3)))

    end:

a:= n-> b(n)[2]:

seq(a(n), n=1..55);  # Alois P. Heinz, Aug 07 2019

MATHEMATICA

nmax = 55; Rest[CoefficientList[Series[Sum[x^i^3, {i, 1, nmax}]/(1 - Sum[x^j^3, {j, 1, nmax}])^2, {x, 0, nmax}], x]]

CROSSREFS

Cf. A000578, A023358.

Sequence in context: A322801 A322798 A085793 * A143286 A160339 A033072

Adjacent sequences:  A281806 A281807 A281808 * A281810 A281811 A281812

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jan 30 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 15:47 EDT 2022. Contains 354913 sequences. (Running on oeis4.)