login
A281781
Expansion of Product_{k>=1} (1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1).
5
1, 1, -1, 2, -1, -2, 6, -6, 3, -1, -1, 9, -18, 23, -27, 23, -1, -24, 49, -89, 121, -117, 96, -60, -18, 138, -275, 408, -525, 592, -566, 444, -181, -276, 854, -1485, 2154, -2765, 3157, -3131, 2571, -1468, -301, 2813, -5860, 9153, -12386, 15082, -16664, 16558, -14125
OFFSET
0,4
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} x^k/(k*(1 + x^k)^2)). - Ilya Gutkovskiy, May 28 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)
nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k))^(4*k)/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)
nmax = 50; CoefficientList[Series[Product[(1 + x^k)^(4*k)*(1 - x^k)^(3*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)
PROG
(PARI) x='x+O('x^51); Vec(prod(k=1, 50, (1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1))) \\ Indranil Ghosh, Apr 14 2017
CROSSREFS
Sequence in context: A336524 A219570 A285030 * A351317 A094965 A025277
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 14 2017
STATUS
approved