This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A281743 Expansion of chi(-x) * chi(-x^4) / (chi(-x^3) * chi(-x^12)) in powers of x where chi() is a Ramanujan theta function. 2
 1, -1, 0, 0, -1, 0, 1, -1, 1, 1, -1, 0, 1, -2, 1, 1, -1, 0, 2, -3, 0, 2, -2, 0, 4, -4, 1, 3, -5, 0, 5, -6, 3, 4, -6, 0, 6, -9, 3, 6, -7, 1, 9, -12, 2, 9, -11, 1, 15, -17, 4, 12, -18, 2, 19, -23, 8, 17, -23, 3, 22, -31, 9, 23, -28, 3, 31, -41, 8, 31, -39, 5, 46 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,14 COMMENTS The sequence generating function appears on the right side of one of Ramanujan's Forty identities. Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106). Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of G(x^8) * H(x^3) - x * G(x^3) * H(x^8) in powers of x where G(), H() are Rogers-Ramanujan functions. Expansion of q^(-5/12) * eta(q) * eta(q^4) * eta(q^6) * eta(q^24) / (eta(q^2) * eta(q^3) * eta(q^8) * eta(q^12)) in powers of q. Euler transform of period 24 sequence [-1, 0, 0, -1, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, -1, 0, 0, -1, 0, ...]. EXAMPLE G.f. = 1 - x - x^4 + x^6 - x^7 + x^8 + x^9 - x^10 + x^12 - 2*x^13 + ... G.f. = q^5 - q^17 - q^53 + q^77 - q^89 + q^101 + q^113 - q^125 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^4, x^8] QPochhammer[ -x^3, x^3] QPochhammer[ -x^12, x^12], {x, 0, n}]; PROG (PARI) {a(n) = if( n<0, 0, my(A = x * O(x^n)); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^24 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)), n))}; CROSSREFS Sequence in context: A064272 A117479 A200650 * A118404 A089339 A249303 Adjacent sequences:  A281740 A281741 A281742 * A281744 A281745 A281746 KEYWORD sign AUTHOR Michael Somos, Jan 28 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 13:50 EST 2019. Contains 329877 sequences. (Running on oeis4.)