login
A281708
a(n) = (Sum_{k=1..n} k^3 * p(k) * p(n-k)) * 2/n where p = A000041.
2
2, 17, 66, 218, 564, 1407, 3074, 6536, 12960, 24991, 46028, 83166, 145182, 249151, 417432, 688742, 1114978, 1782228, 2804886, 4365560, 6709074, 10208894, 15368870, 22937184, 33916388, 49763175, 72429396, 104685554, 150234266, 214249998, 303606838, 427780502
OFFSET
1,1
COMMENTS
See A067567 for a conjecture about this sequence from Peter Bala.
LINKS
EXAMPLE
G.f. = 2*x + 17*x^2 + 66*x^3 + 218*x^4 + 564*x^5 + 1407*x^6 + 3074*x^7 + ...
MATHEMATICA
a[n_]:= (2/n)*Sum[k^3*PartitionsP[k]*PartitionsP[n-k], {k, 1, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jul 29 2018 *)
PROG
(PARI) {a(n) = if( n<1, 0, sum(k=1, n, k^3 * numbpart(k) * numbpart(n-k)) * 2 / n)};
CROSSREFS
Sequence in context: A357737 A037420 A034721 * A107815 A042803 A182876
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 28 2017
STATUS
approved