This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A281707 Even integers k such that phi(sum of even divisors of k) = sum of odd divisors of k. 2
 6, 14, 42, 62, 186, 254, 434, 762, 1302, 1778, 5334, 7874, 16382, 23622, 49146, 55118, 114674, 165354, 262142, 344022, 507842, 786426, 1048574, 1523526, 1834994, 2080514, 3145722, 3554894, 5504982, 6241542, 7340018, 8126402, 10664682, 14563598, 22020054 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The number of divisors of a(n) is a power of 2, and sum of even divisors = 2^(m+1), sum of odd divisors = 2^m for some m. a(n) == 2, 6 mod 8 or a(n) == 2, 6 mod 12. a(n) is of the form 2p1*p2*...pk where p1, p2,...,pk are Mersenne primes =   3, 7, 31, 127, 8191,... (see A000668). LINKS EXAMPLE 62 is in the sequence because the divisors are 1, 2, 31 and 62. Sum of even divisors of 62 = 62 + 2 = 2^6, sum of odd divisors = 1 + 31 = 2^5 => phi(2^6) = 2^5. MAPLE with(numtheory): for n from 2 by 2 to 10^6 do: x:=divisors(n):n1:=nops(x):s0:=0:s1:=0:    for k from 1 to n1 do:     if irem(x[k], 2)=0      then      s0:=s0+ x[k]:      else      s1:=s1+ x[k]:     fi:   od:     if s1=phi(s0)      then      print(n):      else     fi: od: PROG (PARI) isok(n) = eulerphi(sumdiv(n, d, d*((d % 2)==0))) == sumdiv(n, d, d*(d%2)); \\ Michel Marcus, Jan 28 2017 CROSSREFS Cf. A000010, A000593, A000668, A146076. Sequence in context: A134259 A069166 A184393 * A093369 A130443 A294655 Adjacent sequences:  A281704 A281705 A281706 * A281708 A281709 A281710 KEYWORD nonn AUTHOR Michel Lagneau, Jan 28 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 21:34 EDT 2019. Contains 321382 sequences. (Running on oeis4.)