login
A281624
Numbers n such that 2^phi(n) + 1 is prime (Fermat prime).
0
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 60
OFFSET
1,2
COMMENTS
Numbers n such that A243305(n) is a Fermat prime (A019434).
If there are only 5 Fermat primes, sequence is finite with 20 terms; corresponding values of Fermat primes: 3, 3, 5, 5, 17, 5, 17, 17, 17, 257, 257, 65537, 257, 257, 257, 65537, 65537, 65537, 65537, 65537.
Number of numbers k such that 2^phi(k) + 1 = A019434(n) for n = 1-5: 2, 3, 4, 5, 6.
EXAMPLE
10 is a term because 2^phi(10) + 1 = 2^4 + 1 = 17 (prime).
PROG
(Magma) [n: n in[1..10000] | IsPrime(2^(EulerPhi(n)) + 1)]
(PARI) is(n)=isprime(2^eulerphi(n)+1) \\ Charles R Greathouse IV, Jan 27 2017
CROSSREFS
Subsequence of A003401.
Cf. A000010 (phi(n)), A019434, A243305, A281623.
Sequence in context: A331206 A295298 A003401 * A242441 A064481 A336505
KEYWORD
nonn,more
AUTHOR
Jaroslav Krizek, Jan 25 2017
STATUS
approved