Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #21 Feb 22 2021 02:53:16
%S 0,1,2,3,4,-5,-24,-98,-272,621,4960,31856,132672,-437593,-4893056,
%T -42854160,-237969664,1026405753,14756156928,163699919104,
%U 1136284574720,-6054175060941,-106379840985088,-1428593836836352,-11899498670002176,75477454065058725
%N E.g.f. z*(2*(exp(z) + 1)/(cosh(z) + cos(z)) - 1).
%H L. Seidel, <a href="http://publikationen.badw.de/de/003384831/pdf/CC%20BY">Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), 157-187.
%p A281588_list := proc(n) z*(2*(exp(z)+1)/(cosh(z)+cos(z))-1);
%p series(%,z,n+1); seq(k!*coeff(%,z,k),k=0..n) end: A281588_list(25);
%o (Sage)
%o def SIB(dim, m): # Algorithm of L. Seidel (1877).
%o E = matrix(ZZ, dim)
%o def plow(n, dir):
%o if dir : # right to left backward
%o E[n, 0] = int(n == 1)
%o for k in range(n-1, -1, -1) :
%o E[k, n-k] = E[k+1, n-k-1] - E[k, n-k-1]
%o else: # left to right forward
%o E[0, n] = 0
%o for k in range(1, n+1, 1) :
%o E[k, n-k] = E[k-1, n-k+1] + E[k-1, n-k]
%o dir = [mod(n, m) == 1 for n in (0..dim-1)]
%o for n in (0..dim-1): plow(n, dir[n])
%o return [E[0,k] if dir[k] else E[k,0] for k in range(dim)]
%o A281588_list = lambda len: SIB(len, 4)
%o A281588_list(26)
%Y Cf. A281587.
%K sign
%O 0,3
%A _Peter Luschny_, Feb 01 2017