login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

E.g.f. z*(2*(exp(z) + 1)/(cosh(z) + cos(z)) - 1).
2

%I #21 Feb 22 2021 02:53:16

%S 0,1,2,3,4,-5,-24,-98,-272,621,4960,31856,132672,-437593,-4893056,

%T -42854160,-237969664,1026405753,14756156928,163699919104,

%U 1136284574720,-6054175060941,-106379840985088,-1428593836836352,-11899498670002176,75477454065058725

%N E.g.f. z*(2*(exp(z) + 1)/(cosh(z) + cos(z)) - 1).

%H L. Seidel, <a href="http://publikationen.badw.de/de/003384831/pdf/CC%20BY">Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen</a>, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, Vol. 7 (1877), 157-187.

%p A281588_list := proc(n) z*(2*(exp(z)+1)/(cosh(z)+cos(z))-1);

%p series(%,z,n+1); seq(k!*coeff(%,z,k),k=0..n) end: A281588_list(25);

%o (Sage)

%o def SIB(dim, m): # Algorithm of L. Seidel (1877).

%o E = matrix(ZZ, dim)

%o def plow(n, dir):

%o if dir : # right to left backward

%o E[n, 0] = int(n == 1)

%o for k in range(n-1, -1, -1) :

%o E[k, n-k] = E[k+1, n-k-1] - E[k, n-k-1]

%o else: # left to right forward

%o E[0, n] = 0

%o for k in range(1, n+1, 1) :

%o E[k, n-k] = E[k-1, n-k+1] + E[k-1, n-k]

%o dir = [mod(n, m) == 1 for n in (0..dim-1)]

%o for n in (0..dim-1): plow(n, dir[n])

%o return [E[0,k] if dir[k] else E[k,0] for k in range(dim)]

%o A281588_list = lambda len: SIB(len, 4)

%o A281588_list(26)

%Y Cf. A281587.

%K sign

%O 0,3

%A _Peter Luschny_, Feb 01 2017