login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281425 a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j). 11
1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

a(n) is n-th term of the Euler transform of -n + 1, 1, 1, 1, ...

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..3000

A. M. Odlyzko, Differences of the partition function, Acta Arithmetica 49.3 (1988): 237-254.

Dennis Stanton and Doron Zeilberger, The Odlyzko conjecture and O’Hara’s unimodality proof, Proceedings of the American Mathematical Society 107.1 (1989): 39-42.

FORMULA

a(n) = [q^n] 1/((1 + q)*(1 + q + q^2)*...*(1 + q + ... + q^(n-1)).

a(n) = Sum_{j=0..n} (-1)^j * binomial(n, j) * A000041(n-j). - Vaclav Kotesovec, Oct 06 2017

a(n) ~ (-1)^n * 2^(n - 3/2) * exp(Pi*sqrt(n/12) + Pi^2/96) / (sqrt(3)*n). - Vaclav Kotesovec, May 07 2018

MATHEMATICA

Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}]

Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}]

Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}]

Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten

Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)

CROSSREFS

Cf. A128566, A292463, A292541, A292613.

Cf. A000041, A002865, A053445, A275638, A275639, A275640, A275641, A275642, A275643, A275644.

Cf. A218481, A294466, A095051.

Cf. A266232, A294467, A293467, A294468.

Sequence in context: A137256 A051164 A182904 * A101891 A119967 A266232

Adjacent sequences:  A281422 A281423 A281424 * A281426 A281427 A281428

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Oct 05 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 23:47 EDT 2020. Contains 337378 sequences. (Running on oeis4.)