login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281376 Total number of counts where floor(N/k) < floor((N+k)/n) for k = {1, 2, ..., n-1} and N >= n. 1
0, 0, 0, 1, 3, 6, 11, 17, 25, 35, 47, 60, 77, 95, 115, 138, 164, 191, 222, 254, 290, 329, 370, 412, 460, 510, 562, 617, 676, 736, 802, 869, 940, 1014, 1090, 1169, 1255, 1342, 1431, 1523, 1621, 1720, 1825, 1931, 2041, 2156, 2273, 2391, 2517, 2645, 2777 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (terms 1..200 from Lorenz H. Menke, Jr.)

FORMULA

a(n) = Sum_{d=1..ceiling((n-3)/3)} Sum_{j=1..n-(2*d+1)} floor(j/d). - Jon E. Schoenfield, Jan 23 2017

a(n) = Sum_{d=1..ceiling(n/3)-1} ((j+1)*(j*d/2 + n mod d)), where j = floor(n/d) - 3. - Jon E. Schoenfield, Jan 24 2017

EXAMPLE

For n = 5, we have counted the cases where floor(N/k) < floor((N+k)/5), k = {1,2,3,4} then a(5) = 3, since this is true only for k = 4 and N = 6, k = 4 and N = 7, and k = 4 and N = 11.

MAPLE

A281376 := proc(n)

local a, k, N;

a := 0 ;

for k from 1 to n-1 do

for N from n do

if floor(N/k) < floor((N+k)/n) then

a := a +1 ;

elif N >= (k+2*n)*k/(n-k) then

break;

end if;

end do:

end do:

a ;

end proc:

seq(A281376(n), n=1..10) ; # R. J. Mathar, Feb 03 2017

MATHEMATICA

a[n_] :=

Block[{lhs, rhs, count},

count = 0;

Do[lhs = Floor[H1/k];

rhs = Floor[(H1 + k)/n];

If[lhs < rhs, count++], {k, 1, n - 1}, {H1,

n, (n^2 - 3 n + 1) + 10}]; (* the 10 is simply guard counts *)

Return[count]];

a281376[n_] :=

Sum[Floor[j/d], {d, Ceiling[(n - 3)/3]}, {j, n - (2 d + 1)}]

(* Hartmut F. W. Hoft, Jan 25 2017; based on the first formula above *)

PROG

(PARI) a(n) = sum(d = 1, ceil((n-3)/3), sum(j = 1, n-(2*d+1), j\d)); \\ Michel Marcus, Jan 29 2017

CROSSREFS

Sequence in context: A273140 A320272 A119639 * A247586 A107957 A000603

Adjacent sequences: A281373 A281374 A281375 * A281377 A281378 A281379

KEYWORD

nonn

AUTHOR

Lorenz H. Menke, Jr., Jan 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 09:20 EST 2022. Contains 358607 sequences. (Running on oeis4.)