login
A281374
Coefficients in q-expansion of E_2^2, where E_2 is the Eisenstein series shown in A006352.
12
1, -48, 432, 3264, 9456, 21600, 39744, 66432, 105840, 147984, 220320, 281664, 393792, 475104, 646272, 743040, 980592, 1091232, 1432944, 1536960, 1965600, 2118144, 2649024, 2761344, 3516480, 3557040, 4433184, 4594560, 5575296, 5603040, 6998400, 6864384, 8407152, 8494848, 10085472, 9918720, 12319152
OFFSET
0,2
LINKS
MAPLE
with(numtheory); M:=100;
E := proc(k) local n, t1; global M;
t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
series(t1, q, M+1); end;
e2:=E(2); e4:=E(4); e6:=E(6);
series(e2^2, q, M+1);
seriestolist(%);
MATHEMATICA
terms = 37;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E2[x]^2 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
CROSSREFS
Cf. A006352.
Sequence in context: A172201 A249293 A347168 * A190416 A231342 A192828
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Feb 05 2017
STATUS
approved