login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281312 Numbers n such that sigma(4*(n-1)) is prime. 2
2, 5, 17, 1025, 16385, 65537, 268435457, 288230376151711745, 77371252455336267181195265, 20282409603651670423947251286017, 21267647932558653966460912964485513217 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: the next terms are: 288230376151711745, 77371252455336267181195265, 20282409603651670423947251286017, 21267647932558653966460912964485513217.

Conjecture: prime terms are in A258429: 2, 5, 17, 65537.

Conjecture: corresponding primes p are Mersenne primes (A000668) > 3.

Sigma is multiplicative, and sigma(m) > 1 for all m > 1, so sigma(m) can be prime only if m is a prime power. Hence all n in this sequence are of the form 2^m + 1 for some m >= 0. This proves the above conjectures and leads to an explicit formula (q.v.) in terms of the Mersenne numbers. - Charles R Greathouse IV, Mar 01 2017

LINKS

Table of n, a(n) for n=1..11.

FORMULA

a(n) = 2^(A000043(n+1)-3) + 1. - Charles R Greathouse IV, Mar 01 2017

PROG

(MAGMA) [n: n in [2..100000] | IsPrime(SumOfDivisors(4*(n-1)))]

(PARI) isok(n) = isprime(sigma(4*(n-1))); \\ Michel Marcus, Jan 21 2017

CROSSREFS

Cf. A000203, A000668, A193553, A258429.

Sequence in context: A041455 A081465 A128000 * A182313 A124374 A113617

Adjacent sequences:  A281309 A281310 A281311 * A281313 A281314 A281315

KEYWORD

nonn

AUTHOR

Jaroslav Krizek, Jan 19 2017

EXTENSIONS

a(7) = 268435457 confirmed by Jon E. Schoenfield, Jan 20 2017

a(8)-a(11) from Charles R Greathouse IV, Mar 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 22 12:24 EDT 2017. Contains 288613 sequences.