login
A281274
Expansion of Product_{j>=1} (1 + x^(Sum_{i=1..j} prime(i))).
2
1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 3, 0, 3, 0, 1, 2, 0, 2, 0, 0, 2, 1, 2, 1, 0, 2, 1, 3, 1, 2, 0, 2, 1, 1, 2, 0, 2, 1, 3, 2, 2, 1, 1, 2, 2, 2, 2, 0, 3, 0, 2, 2, 1, 4, 1, 3, 2, 3, 2, 2, 1, 2, 3
OFFSET
0,18
COMMENTS
Number of partitions of n into distinct nonzero partial sums of primes (A007504).
LINKS
Eric Weisstein's World of Mathematics, Prime Sums
Eric Weisstein's World of Mathematics, Prime Partition
FORMULA
G.f.: Product_{j>=1} (1 + x^(Sum_{i=1..j} prime(i))).
EXAMPLE
a(17) = 2 because we have [17] and [10, 5, 2], where 2 = prime(1), 5 = prime(1) + prime(2), 10 = prime(1) + prime(2) + prime(3), 17 = prime(1) + prime(2) + prime(3) + prime(4).
MATHEMATICA
nmax = 110; CoefficientList[Series[Product[1 + x^Sum[Prime[i], {i, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 18 2017
STATUS
approved