login
A281208
Number of 4 X n 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
0, 38, 168, 270, 470, 804, 1358, 2284, 3834, 6432, 10786, 18080, 30290, 50712, 84838, 141812, 236846, 395228, 658966, 1097796, 1827410, 3039624, 5052282, 8391768, 13929370, 23106544, 38306878, 63470044, 105104774, 173959572, 287777246
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6) for n>10.
Empirical g.f.: 2*x^2*(19 + 8*x - 125*x^2 + 69*x^3 + 94*x^4 - 55*x^5 - 17*x^6 + 13*x^7 + x^8) / ((1 - x)^2*(1 - x - x^2)^2). - Colin Barker, Feb 18 2019
EXAMPLE
Some solutions for n=4:
..0..0..0..1. .0..0..0..1. .0..0..1..0. .0..1..1..0. .0..0..1..0
..0..1..0..0. .1..1..0..0. .1..0..1..1. .0..0..1..1. .0..1..0..1
..0..1..1..0. .0..1..1..0. .1..0..0..1. .1..0..0..1. .0..1..0..1
..0..0..1..1. .0..0..1..0. .1..0..1..0. .1..0..1..0. .0..1..0..1
CROSSREFS
Row 4 of A281205.
Sequence in context: A224739 A135176 A318625 * A100167 A100168 A137022
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 17 2017
STATUS
approved