login
A281200
Number of n X 3 0..1 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
1, 14, 56, 168, 448, 1120, 2688, 6272, 14336, 32256, 71680, 157696, 344064, 745472, 1605632, 3440640, 7340032, 15597568, 33030144, 69730304, 146800640, 308281344, 645922816, 1350565888, 2818572288, 5872025600, 12213813248, 25367150592
OFFSET
1,2
LINKS
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 12.
FORMULA
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) for n>3.
Conjectures from Colin Barker, Feb 16 2019: (Start)
G.f.: x*(1 + 10*x + 4*x^2) / (1 - 2*x)^2.
a(n) = 7*2^(n-1) * (n-1) for n>1.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..0. .0..1..1. .0..0..1. .0..1..0. .0..0..1. .0..0..0. .0..1..1
..1..1..0. .0..1..0. .1..0..1. .0..1..1. .1..1..0. .1..1..0. .1..0..1
..0..1..0. .0..1..0. .1..0..1. .1..0..1. .0..1..0. .0..1..0. .1..0..1
..0..1..0. .0..1..0. .1..1..0. .1..0..0. .0..1..0. .0..1..1. .0..1..0
CROSSREFS
Column 3 of A281205.
Sequence in context: A192846 A212347 A115129 * A212341 A067326 A202242
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 17 2017
STATUS
approved