login
A281154
Expansion of (Sum_{k>=2} x^(k^2))^2.
1
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2
OFFSET
0,14
COMMENTS
Number of ways to write n as an ordered sum of 2 squares > 1.
FORMULA
G.f.: (Sum_{k>=2} x^(k^2))^2.
G.f.: (1/4)*(1 + 2*x - theta_3(0,x))^2, where theta_3 is the 3rd Jacobi theta function.
EXAMPLE
G.f. = x^8 + 2*x^13 + x^18 + 2*x^20 + 2*x^25 + 2*x^29 + x^32 + 2*x^34 + 2*x^40 + ...
a(13) = 2 because we have [9, 4] and [4, 9].
MATHEMATICA
nmax = 105; CoefficientList[Series[Sum[x^k^2, {k, 2, nmax}]^2, {x, 0, nmax}], x]
CoefficientList[Series[(1 + 2 x - EllipticTheta[3, 0, x])^2/4, {x, 0, 105}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 16 2017
STATUS
approved