login
A281145
Number of same-trees of weight n.
34
1, 2, 2, 6, 2, 14, 2, 54, 10, 38, 2, 494, 2, 134, 42, 4470, 2, 3422, 2, 10262, 138, 2054, 2, 490926, 34, 8198, 1514, 314294, 2, 628318, 2, 30229110, 2058, 131078, 162, 150147342, 2, 524294, 8202, 628073814, 2, 109952254, 2, 371210294, 207370, 8388614, 2
OFFSET
1,2
COMMENTS
A same-tree is either: (case 1) a positive integer, or (case 2) a finite sequence of two or more same-trees all having the same weight, where the weight in case 2 is the sum of weights.
LINKS
FORMULA
a(n) = 1 + Sum a(d)^(n/d) where the sum is over divisors less than n.
EXAMPLE
The a(6)=14 same-trees are:
6,
(33),
(222),
(3(111)), ((111)3),
(22(11)), (2(11)2), ((11)22),
(2(11)(11)), ((11)2(11)), ((11)(11)2),
((111)(111)), ((11)(11)(11)), (111111).
The a(9)=10 same-trees are:
9,
(333),
(33(111)), (3(111)3), ((111)33),
(3(111)(111)), ((111)3(111)), ((111)(111)3),
((111)(111)(111)), (111111111).
MATHEMATICA
a[n_]:=1+DivisorSum[n, b[#]^(n/#)&]-b[n]/.b->a;
Array[a, 47]
PROG
(PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sumdiv(n, d, v[n/d]^d)); v} \\ Andrew Howroyd, Aug 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2017
STATUS
approved