login
A281124
Number of n X 2 0..2 arrays with no element equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
0, 2, 28, 208, 1364, 8354, 48992, 278966, 1554744, 8524848, 46147848, 247246206, 1313446848, 6927856426, 36320588564, 189426835088, 983467437564, 5085683787674, 26206495324448, 134618732560222, 689572430485168
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) - 8*a(n-2) - 30*a(n-3) - 24*a(n-4) - 8*a(n-5) - a(n-6).
Empirical g.f.: 2*x^2*(1 + x)*(1 + 5*x - 5*x^2 - 3*x^3) / (1 - 4*x - 4*x^2 - x^3)^2. - Colin Barker, Feb 15 2019
EXAMPLE
Some solutions for n=4:
..0..1. .0..1. .0..1. .0..1. .0..1. .0..1. .0..0. .0..0. .0..1. .0..1
..1..0. .1..0. .0..2. .1..0. .1..2. .0..2. .1..2. .1..2. .0..2. .0..1
..1..2. .1..2. .1..2. .0..2. .2..0. .0..1. .0..2. .1..1. .1..2. .2..2
..0..2. .0..0. .1..2. .0..1. .2..0. .1..2. .0..0. .2..0. .2..1. .0..2
CROSSREFS
Column 2 of A281129.
Sequence in context: A001798 A123787 A035601 * A244721 A001759 A243475
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 15 2017
STATUS
approved