login
A281089
Numbers k such that k = Sum_{j=1..i} (j^k mod k) for some i>=1.
1
2, 3, 4, 8, 9, 14, 16, 27, 30, 32, 64, 81, 98, 99, 128, 153, 171, 243, 256, 375, 512, 513, 561, 621, 686, 729, 750, 978, 1024, 1199, 1539, 1558, 1617, 1625, 2048, 2187, 3249, 3890, 4018, 4096, 4617, 4802, 5049, 5139, 6345, 6561, 8019, 8192, 8911, 9747, 10209, 10585
OFFSET
2,1
COMMENTS
If k = 2^x then i = 2^(x+1) - 1.
LINKS
EXAMPLE
1^99 mod 99 + 2^99 mod 99 + 3^99 mod 99 = 1 + 17 + 81 = 99.
MAPLE
P:=proc(q) local a, b, n; for n from 2 to q do a:=0; b:=0; while a<n do
b:=b+1; a:=a+(b^n mod n); od; if a=n then print(n); fi; od; end: P(10^5);
CROSSREFS
Cf. A000079 is a subsequence.
Sequence in context: A022999 A244151 A057844 * A242333 A231811 A015922
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jan 16 2017
STATUS
approved