login
A281084
Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)+1)).
5
1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1
OFFSET
0,99
COMMENTS
Number of partitions of n into distinct centered hexagonal numbers (A003215).
FORMULA
G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)+1)).
EXAMPLE
a(98) = 2 because we have [91, 7] and [61, 37].
MATHEMATICA
nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1) + 1), {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 14 2017
STATUS
approved