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We consider a  n-by-n  chessboard where dominoes are arranged in a way that the placement of a 
further domino is impossible. Denote Dmin(n) as the minimum number of dominoes for which this 
can be achieved. 

Gyárfás, Lehel and Tuza proved for n > 1:   D0(n) = ⌈
  

 
⌉  Dmin .  (See OEIS-A280984) 

With a special backtracking algorithm it is possible to determine the number P(n) of fixed packings 
with D0(n)  dominoes. (Also reflected or rotated packings are counted.) 
The algorithm will be described in a paper written by Andejs Cibulis and me. 

For certain n  19  a packing with  D0(n)  dominoes does not exist. 
In these cases a packing with  D0(n)+1  dominoes is possible as long as  n < 34.   

 

n D0(n) P(n)  n D0(n) P(n) 

2 2 2  18 108 16 

3 3 4  19 121 0 

4 6 100  20 134 16 

5 9 312  21 147 16 

6 12 14  22 162 0 

7 17 5020  23 177 0 

8 22 4804  24 192 16 

9 27 16  25 209 0 

10 34 14844  26 226 0 

11 41 11128  27 243 16 

12 48 16  28 262 0 

13 57 7568  29 281 0 

14 66 4900  30 300 16 

15 75 16  31 321 0 

16 86 964  32 342 0 

17 97 560  33 363 16 
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0, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 122, 134, 147, 163, 178, 192, 210, 
227, 243, 263, 282, 300, 322, 343, 363 

 

See samples of minimal packings for  n = 19, 20 and 31  on next pages. 

  



n = 19 

D = D0(n) + 1 = 122 

 

  



n = 20 

D = D0(n) = 134 

 

  



n = 31 

Dominoes:  D = D0(n) + 1 = 322 

Holes:  H = 31· 31 – 2· 322 = 317 

 

 


