We consider a n-by-n chessboard where dominoes are arranged in a way that the placement of a further domino is impossible. Denote $D_{\text {min }}(n)$ as the minimum number of dominoes for which this can be achieved.
Gyárfás, Lehel and Tuza proved for $n>1: \quad D_{0}(n)=\left\lceil\frac{n^{2}}{3}\right\rceil \leq D_{\text {min }}$. (See OEIS-A280984)
With a special backtracking algorithm it is possible to determine the number $\mathrm{P}(\mathrm{n})$ of fixed packings with $D_{0}(\mathrm{n})$ dominoes. (Also reflected or rotated packings are counted.)
The algorithm will be described in a paper written by Andejs Cibulis and me.
For certain $\mathrm{n} \geq 19$ a packing with $\mathrm{D}_{0}(\mathrm{n})$ dominoes does not exist.
In these cases a packing with $D_{0}(n)+1$ dominoes is possible as long as $n<34$.

n	$\mathrm{D}_{0}(\mathrm{n})$	$\mathrm{P}(\mathrm{n})$
2	2	2
3	3	4
4	6	100
5	9	312
6	12	14
7	17	5020
8	22	4804
9	27	16
10	34	14844
11	41	11128
12	48	16
13	57	7568
14	66	4900
15	75	16
16	86	964
17	97	560

n	$D_{0}(n)$	$P(n)$
18	108	16
19	121	0
20	134	16
21	147	16
22	162	0
23	177	0
24	192	16
25	209	0
26	226	0
27	243	16
28	262	0
29	281	0
30	300	16
31	321	0
32	342	0
33	363	16

OEIS-A280984

$0,2,3,6,9,12,17,22,27,34,41,48,57,66,75,86,97,108,122,134,147,163,178,192,210$, 227, 243, 263, 282, 300, 322, 343, 363

See samples of minimal packings for $n=19,20$ and 31 on next pages.

$$
\begin{gathered}
\mathbf{n}=19 \\
\mathrm{D}=\mathrm{D}_{0}(\mathrm{n})+1=122
\end{gathered}
$$

$$
\mathrm{n}=20
$$

$$
D=D_{0}(n)=134
$$

$$
n=31
$$

Dominoes: $D=D_{0}(n)+1=322$
Holes: $\mathrm{H}=31 \cdot 31-2 \cdot 322=317$

