login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer partitions of n using predecessors of prime numbers.
10

%I #12 Jun 07 2018 11:00:15

%S 1,1,2,2,4,4,7,7,11,11,17,17,26,26,37,37,53,53,74,74,101,101,137,137,

%T 183,183,240,240,314,314,406,406,520,520,662,662,837,837,1049,1049,

%U 1311,1311,1627,1627,2008,2008,2469,2469,3021,3021,3678,3678,4466,4466

%N Number of integer partitions of n using predecessors of prime numbers.

%C The predecessors of prime numbers are {1, 2, 4, 6, 10, 12, ...} = A006093.

%H Alois P. Heinz, <a href="/A280954/b280954.txt">Table of n, a(n) for n = 0..10000</a>

%e The partitions for n=0..7 are:

%e (),

%e (1),

%e (2), (11),

%e (21),(111),

%e (4), (22), (211), (1111),

%e (41),(221),(2111),(11111),

%e (6), (42), (411), (222), (2211), (21111), (111111),

%e (61),(421),(4111),(2221),(22111),(211111),(1111111).

%p b:= proc(n, i) option remember; `if`(n=0 or i=2, 1,

%p b(n, prevprime(i))+`if`(i-1>n, 0, b(n-i+1, i)))

%p end:

%p a:= n-> b(n, nextprime(n)):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Jan 11 2017

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(`if`(

%p isprime(d+1), d, 0), d=numtheory[divisors](j)), j=1..n)/n)

%p end:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Jun 07 2018

%t nn=60;invser=Series[Product[1-x^(Prime[n]-1),{n,PrimePi[nn+1]}],{x,0,nn}];

%t CoefficientList[1/invser,x]

%Y Cf. A006093, A023506.

%Y Even (and odd) bipartition gives A280962.

%K nonn

%O 0,3

%A _Gus Wiseman_, Jan 11 2017