OFFSET
0,8
COMMENTS
Number of partitions of n into centered hexagonal numbers (A003215).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..20000
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Eric Weisstein's World of Mathematics, Hex Number
FORMULA
G.f.: Product_{k>=0} 1/(1 - x^(3*k*(k+1)+1)).
EXAMPLE
a(14) = 3 because we have [7, 7], [7, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
MAPLE
h:= proc(n) option remember; `if`(n<0, 0, (t->
`if`(3*t*(t+1)+1>n, t-1, t))(1+h(n-1)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(3*i*(i+1)+1)))
end:
a:= n-> b(n, h(n)):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 28 2018
MATHEMATICA
nmax = 86; CoefficientList[Series[Product[1/(1 - x^(3 k (k + 1) + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 11 2017
STATUS
approved