login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280921 Degree of SO(n,C), the special orthogonal group, as an algebraic variety. 2
2, 8, 40, 384, 4768, 111616, 3433600, 196968448, 14994641408, 2112561610752, 397713919469568, 137785594909556736, 64120367727755108352, 54666180849611078369280, 62864933930402036994048000, 131959858152100309567348408320, 374913851106401853810511580364800, 1938349609799484523235647407112847360, 13603397258157549964912652571654029312000 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

LINKS

Table of n, a(n) for n=2..20.

M. Brandt, D. Bruce, T. Brysiewicz, R. Krone, E. Robeva, The degree of SO(n), arXiv:1701.03200 [math.AG], 2017

FORMULA

a(n) = 2^(n-1)*det(binomial(2n-2i-2j, n-2i))_{i,j=1..floor(n/2)}.

a(2*n+1) = A280922(n) * 2^(2*n).

Let M_n be the n X n matrix M_n(i, j) = binomial(2*i+2*j-2, 2*i-1) = A103328(i+j-1, i-1); then a(2*n+1) = 2^(2*n)*det(M_n).

Let M_n be the n X n matrix M_n(i,j) = binomial(2*i+2*j-4, 2*i-2) = A086645(i+j-2, i-1); then a(2*n) = 2^(2*n-1)*det(M_n).

EXAMPLE

For n = 4 we have a(4) = 2^3*det({6,1},{1,1}) = 2^3*(6-1) = 40.

MATHEMATICA

a[n_] := 2^(n-1) Det[Table[Binomial[2n-2i-2j, n-2i], {i, n/2}, {j, n/2}]];

Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Aug 12 2018 *)

PROG

(PARI) a(n) = 2^(n-1)*matdet(matrix(n\2, n\2, i, j, binomial(2*n-2*i-2*j, n-2*i))); \\ Michel Marcus, Jan 14 2017

CROSSREFS

Cf. A086645, A103328, A280922, A280923.

Sequence in context: A180736 A111394 A140363 * A208962 A351109 A012597

Adjacent sequences: A280918 A280919 A280920 * A280922 A280923 A280924

KEYWORD

nonn

AUTHOR

Taylor Brysiewicz, Jan 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 00:05 EST 2022. Contains 358406 sequences. (Running on oeis4.)