login
Occurrences of decrease of the probability density P(n) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n), and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).
3

%I #29 Feb 11 2017 16:01:15

%S 5005,6545,7315,7735,8645,8855,10465,11165,11935,14245,25025,32725,

%T 35035,36575,38675,43225,44275,45815,51205,52325,54145,55055,55825,

%U 59675,60515,61985,65065,71225,71995,73255,78155,80465,83545,85085,95095,97405,99715

%N Occurrences of decrease of the probability density P(n) of coprime numbers k,m, satisfying 1 <= k <= a(n) and 1 <= m <= a(n), and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).

%C Probability densities satisfying P(a(n)) < P(a(n)-1) and a(n) congruent to 1 (mod 2) and a(n) not congruent to 3 (mod 6).

%C It appears that most numbers satisfy a(n) congruent to 35 (mod 70), but a(74) congruent to 15 (mod 70) and a(93) congruent to 55 (mod 70).

%C Subset of A280877.

%C P(n) = ((2*Sum_{m=1..a(n)} phi(m))-1)/a(n)^2 (Cf. Euler phi function A000010).

%H Chai Wah Wu, <a href="/A280879/b280879.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..102 from A.H.M. Smeets)

%o (Python)

%o from fraction import gcd

%o t = 1

%o to = 1

%o i = 1

%o x = 1

%o while x > 0:

%o ....x = x + 1

%o ....y = 0

%o ....while y < x:

%o ........y = y + 1

%o ........if gcd(x,y) == 1:

%o ............t = t + 2

%o ....e = t*(x-1)*(x-1) - to*x*x

%o ....if (e < 0 and x%2 == 1 and x%6 != 3):

%o ........print(i,x)

%o ........i = i + 1

%o ....to = t

%o (PARI) P(n) = (2 *sum(j=1, n, eulerphi(j)) - 1)/n^2;

%o isok(n) = (n % 2) && ((n % 6) != 3) && (P(n) < P(n-1)); \\ _Michel Marcus_, Jan 29 2017

%o (Python)

%o from sympy import totient

%o A280879_list, n, t = [], 1, 1

%o while len(A280879_list) < 1000:

%o n += 1

%o h = totient(n)

%o t2 = t+h

%o if n % 2 and n % 6 != 3 and 2*(n*(h*n - 2*t2 + 1) + t2) < 1:

%o A280879_list.append(n)

%o t = t2 # _Chai Wah Wu_, Feb 11 2017

%Y Cf. A018805, A280877, A280878.

%K nonn

%O 1,1

%A _A.H.M. Smeets_, Jan 09 2017