

A280870


Numerator of the mediant of prime(n) / prime(n+1) and prime(n+2) / prime(n+3).


2



7, 5, 4, 5, 7, 4, 5, 8, 9, 11, 9, 10, 11, 48, 53, 19, 21, 33, 14, 25, 13, 14, 18, 19, 25, 52, 53, 55, 59, 61, 44, 135, 143, 145, 153, 157, 27, 168, 173, 177, 185, 187, 97, 49, 204, 211, 219, 113, 115, 78, 237, 245, 249, 257, 263, 89, 91, 69, 40, 287, 295
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The mediant of two reduced proper fractions a/b and c/d is (a+c)/(b+d), the value of which is strictly between a/b and c/d.


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
Wikipedia, Mediant


EXAMPLE

The mediant of 2/3 and 5/7 is 7/10.


PROG

(PARI) vector(100, n, numerator((prime(n)+prime(n+2)) / (prime(n+1)+prime(n+3))))


CROSSREFS

Cf. A000040, A280871.
Sequence in context: A273841 A112407 A154195 * A019858 A289032 A289005
Adjacent sequences: A280867 A280868 A280869 * A280871 A280872 A280873


KEYWORD

nonn,frac


AUTHOR

Colin Barker, Jan 09 2017


STATUS

approved



