The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280827 a(n) = A076649(n) - A055642(n). 3
 -1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 3, 1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 1, 4, 1, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 2, 0, 3, 2, 1, 0, 2, 1, 1, 1, 3, 0, 2, 1, 2, 1, 1, 1, 4, 0, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS a(1) is the only negative term in this sequence. - Ely Golden, Jan 10 2017 a(n) = 0 if and only if n is a member of A109608. - Ely Golden, Jan 10 2017 LINKS Ely Golden, Table of n, a(n) for n = 1..10000 Ely Golden, Proof that a(n)>=0 for all n>1 EXAMPLE a(10) = 0, as 2*5 have 2 digits total, and 10 has 2 digits. Thus a(10) = 2-2 = 0. a(1) is defined to be -1, as the empty product has 0 digits, and 1 has 1 digit. Thus a(1) = 0-1 = -1. PROG (SageMath) def digits(x, n):     if(x<=0|n<2):         return []     li=[]     while(x>0):         d=divmod(x, n)         li.insert(0, d[1])         x=d[0]     return li; def factorDigits(x, n):     if(x<=0|n<2):         return []     li=[]     f=list(factor(x))     for c in range(len(f)):         for d in range(f[c][1]):             ld=digits(f[c][0], n)             li+=ld     return li; def digitDiff(x, n):     return len(factorDigits(x, n))-len(digits(x, n)) radix=10 index=1 while(index<=10000):     print(str(index)+" "+str(digitDiff(index, radix)))     index+=1 CROSSREFS Cf. A109608, A076649. Sequence in context: A186714 A160382 A081221 * A103840 A066301 A046660 Adjacent sequences:  A280824 A280825 A280826 * A280828 A280829 A280830 KEYWORD sign,base,easy AUTHOR Ely Golden, Jan 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 14:53 EST 2020. Contains 331049 sequences. (Running on oeis4.)