login
Number of nX5 0..1 arrays with no element equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
1

%I #4 Jan 08 2017 09:44:49

%S 0,72,1578,9715,41931,155560,521862,1635481,4878157,14014639,39104351,

%T 106631105,285454905,752759713,1960409283,5051884455,12901249792,

%U 32688874902,82257457021,205730877021,511748655573,1266736498098

%N Number of nX5 0..1 arrays with no element equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

%C Column 5 of A280810.

%H R. H. Hardin, <a href="/A280807/b280807.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 13*a(n-1) -72*a(n-2) +220*a(n-3) -400*a(n-4) +432*a(n-5) -250*a(n-6) +10*a(n-7) +183*a(n-8) -249*a(n-9) -51*a(n-10) +573*a(n-11) -687*a(n-12) +351*a(n-13) -108*a(n-14) -36*a(n-15) +225*a(n-16) -57*a(n-17) -370*a(n-18) +334*a(n-19) +3*a(n-20) +9*a(n-21) -132*a(n-22) +12*a(n-23) +18*a(n-24) +120*a(n-25) -69*a(n-26) -73*a(n-27) +16*a(n-28) +78*a(n-29) -29*a(n-30) -25*a(n-31) +18*a(n-33) -3*a(n-34) -3*a(n-35) -a(n-36) +a(n-37) for n>46

%e Some solutions for n=4

%e ..0..0..1..0..0. .0..1..0..1..1. .0..1..0..0..1. .0..1..1..1..1

%e ..1..1..0..1..1. .1..1..0..0..0. .0..1..1..1..0. .1..0..0..0..1

%e ..0..1..0..0..0. .0..0..1..1..0. .1..0..0..0..1. .0..1..1..1..0

%e ..1..0..1..1..1. .1..0..0..1..1. .1..0..1..1..0. .0..0..1..0..0

%Y Cf. A280810.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 08 2017