login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280736 Denominator of Product_{k=1..n-1} k^(2k-n-1). 2
1, 2, 1, 6, 1, 16, 9, 5, 1, 16, 1, 28, 225, 2048, 1, 729, 1, 125, 49, 11, 1, 55296, 625, 13, 59049, 43904, 1, 8, 1, 67108864, 121, 17, 2401, 1, 1, 19, 169, 1, 1, 16807, 1, 1331, 36905625, 23, 1, 67108864, 117649, 9765625, 23409, 2197, 1, 94143178827, 14641, 262144, 361, 29, 1, 1024 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Paul M. Jane observed in an email message to N. J. A. Sloane on Jan 10 2016 that the expression (n-1)!^(n-3) / Product_{k=1..n-2} k!^2 appears to be an integer if and only if n is a prime. That expression can be simplified to give Product_{k=1..n-1} k^(2k-n-1), and the result then follows from Vandendriessche and Lee, Problem A13 (compare A182484, which gives the values at the primes).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..500

Peter Vandendriessche and Hojoo Lee, Problems in elementary number theory, Problem A13

EXAMPLE

1, 3/2, 4, 125/6, 225, 84035/16, 2458624/9, 162030456/5, 8930250000, ...

MATHEMATICA

Denominator@Table[Product[k^(2 k - n - 1), {k, 1, n - 1}], {n, 3, 35}] (* Vincenzo Librandi, Jan 12 2017 *)

CROSSREFS

Cf. A182484, A280735.

Sequence in context: A059344 A109193 A225769 * A279095 A186283 A173279

Adjacent sequences:  A280733 A280734 A280735 * A280737 A280738 A280739

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Jan 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 15:00 EST 2018. Contains 318169 sequences. (Running on oeis4.)