login
A280702
a(n) = gcd(A003961(n), A250469(n)).
5
1, 3, 5, 9, 7, 15, 11, 3, 25, 3, 13, 3, 17, 3, 35, 9, 19, 3, 23, 3, 55, 3, 29, 3, 49, 3, 5, 9, 31, 3, 37, 3, 5, 3, 77, 15, 41, 3, 5, 9, 43, 3, 47, 3, 5, 3, 53, 3, 121, 147, 5, 153, 59, 3, 91, 33, 5, 3, 61, 3, 67, 3, 5, 27, 119, 195, 71, 3, 5, 3, 73, 3, 79, 3, 5, 9, 143, 3, 83, 3, 5, 3, 89, 3, 133, 3, 5, 9, 97, 3, 187, 3, 5, 3, 161
OFFSET
1,2
COMMENTS
For n > 1, a(n) > 1 because A020639(A003961(n)) = A020639(A250469(n)) = A003961(A020639(n)).
LINKS
FORMULA
a(n) = gcd(A003961(n), A250469(n)).
MATHEMATICA
f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; Function[s, MapIndexed[ GCD[ Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1], f@ First@ #2] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ 120]]@ PositionIndex@ Array[g, 10^4] (* Michael De Vlieger, Mar 08 2017 *)
PROG
(Scheme) (define (A280702 n) (gcd (A003961 n) (A250469 n)))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 08 2017
STATUS
approved