login
Greatest Lucas number that is a divisor of the n-th Fibonacci number, a(1) = a(2) = 1.
5

%I #13 Jan 12 2017 07:20:17

%S 1,1,2,3,1,4,1,7,2,11,1,18,1,29,2,47,1,76,1,123,2,199,1,322,1,521,2,

%T 843,1,1364,1,2207,2,3571,1,5778,1,9349,2,15127,1,24476,1,39603,2,

%U 64079,1,103682,1,167761,2,271443,1,439204,1,710647,2,1149851,1,1860498,1,3010349,2,4870847,1,7881196,1,12752043,2,20633239,1,33385282,1,54018521,2,87403803

%N Greatest Lucas number that is a divisor of the n-th Fibonacci number, a(1) = a(2) = 1.

%C The even bisection is almost certainly A000204. Consider for example the well-known formula L(n)*F(n) = F(2n) = A001906(n).

%H Antti Karttunen, <a href="/A280699/b280699.txt">Table of n, a(n) for n = 1..987</a>

%F a(n) = A280694(A000045(n)).

%o (Scheme) (define (A280699 n) (A280694 (A000045 n)))

%Y Cf. A000045, A000032, A000204, A001906, A105800, A280694, A280698.

%K nonn

%O 1,3

%A _Antti Karttunen_, Jan 11 2017