This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280662 G.f.: Product_{k>=1, j>=1} 1/(1 - x^(j*k^4)). 4
 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 232, 298, 387, 493, 632, 799, 1013, 1270, 1597, 1988, 2478, 3066, 3795, 4666, 5739, 7018, 8582, 10442, 12699, 15379, 18614, 22443, 27039, 32470, 38957, 46601, 55694, 66383, 79047, 93901, 111432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In general, if m>=3 and g.f. = Product_{k>=1, j>=1} 1/(1-x^(j*k^m)), then a(n, m) ~ exp(Pi*sqrt(2*Zeta(m)*n/3) + Pi^(-1/m) * Gamma(1+1/m) * Zeta(1+1/m) * Zeta(1/m) * (6*n/Zeta(m))^(1/(2*m))) * 2^(m/4 - 7/8) * Pi^(m/4) * Zeta(m)^(1/8) / (3^(1/8) * n^(5/8)). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA a(n) ~ exp(Pi^3 * sqrt(n/15)/3 + 2^(-7/4) * 3^(3/8) * 5^(1/8) * Pi^(-3/4) * Gamma(1/4) * Zeta(5/4) * Zeta(1/4) * n^(1/8)) * Pi^(3/2) / (3^(3/8) * 5^(1/8) * n^(5/8)). MATHEMATICA nmax = 100; CoefficientList[Series[1/Product[1-x^(j*k^4), {k, 1, Floor[nmax^(1/4)]+1}, {j, 1, Floor[nmax/k^4]+1}], {x, 0, nmax}], x] CROSSREFS Cf. A006171 (m=1), A004101 (m=2), A280661 (m=3). Cf. A280664. Sequence in context: A092885 A213598 A000041 * A218027 A241729 A084251 Adjacent sequences:  A280659 A280660 A280661 * A280663 A280664 A280665 KEYWORD nonn AUTHOR Vaclav Kotesovec, Jan 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 14:59 EST 2018. Contains 318229 sequences. (Running on oeis4.)