login
A280642
Numbers k such that k^3 has an odd number of digits and the middle digit is 2.
3
5, 9, 103, 113, 133, 146, 151, 154, 165, 180, 198, 202, 470, 473, 493, 496, 504, 507, 521, 531, 538, 542, 566, 569, 581, 591, 593, 599, 612, 618, 620, 650, 654, 673, 681, 686, 703, 711, 715, 728, 729, 732, 740, 779, 801, 829, 841, 850, 855, 856, 857, 858, 874
OFFSET
1,1
COMMENTS
The sequence of cubes starts: 125, 729, 1092727, 1442897, 2352637, 3112136, 3442951, 3652264, ...
LINKS
Jeremy Gardiner, Middle digit in cube numbers, Seqfan Mailing list, Dec 12 2016.
EXAMPLE
5^3 = 1(2)5, 180^3 = 583(2)000, 618^3 = 2360(2)9032.
MATHEMATICA
a[n_]:=Part[IntegerDigits[n], (Length[IntegerDigits[n]]+1)/2];
Select[Range[0, 874], OddQ[Length[IntegerDigits[#^3]]] && a[#^3]==2 &] (* Indranil Ghosh, Mar 06 2017 *)
PROG
(PARI)
isok(k) = my(d=digits(k^3)); (#d%2 == 1) && (d[#d\2 +1] == 2);
for(k=0, 874, if(isok(k)==1, print1(k, ", "))); \\ Indranil Ghosh, Mar 06 2017
(Python)
i=0
j=1
while i<=874:
n=str(i**3)
l=len(n)
if l%2 and n[(l-1)//2]=="2":
print(str(i), end=', ')
j+=1
i+=1 # Indranil Ghosh, Mar 06 2017
CROSSREFS
See A279420-A279429 for a k^2 version.
See A279430-A279431 for a k^2 version in base 2.
Sequence in context: A098097 A279707 A329002 * A359396 A222583 A222374
KEYWORD
nonn,base,easy
AUTHOR
Lars Blomberg, Jan 07 2017
STATUS
approved