login
A280590
Numbers k such that for any positive integers (a, b), if a * b = k then sigma(a) + sigma(b) is a prime.
1
1, 3, 5, 6, 11, 17, 24, 26, 27, 29, 38, 41, 59, 71, 101, 107, 125, 137, 149, 158, 179, 191, 197, 206, 218, 227, 239, 269, 281, 311, 344, 347, 419, 431, 446, 458, 461, 521, 536, 569, 599, 617, 641, 659, 698, 809, 821, 827, 857, 878, 881, 1019, 1031, 1049, 1061
OFFSET
1,2
COMMENTS
The subsequence of primes {3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, ... is exactly A001359 (lesser of twin primes).
LINKS
EXAMPLE
1 is in the sequence because 1 = 1*1 and sigma(1) + sigma(1) = 1 + 1 = 2 is prime.
24 is in the sequence because A038548(24) = 4 => four decompositions of 24 = 1*24 = 2*12 = 3*8 = 4*6 and
sigma(1) + sigma(24) = 1 + 60 = 61 is prime;
sigma(2) + sigma(12) = 3 + 28 = 31 is prime;
sigma(3) + sigma(8) = 4 + 15 = 19 is prime;
sigma(4) + sigma(6) = 7 + 12 = 19 is prime.
MATHEMATICA
t={}; Do[ds=Divisors[n]; If[EvenQ[Length[ds]], ok=True; k=1; While[k<=Length[ds]/2&&(ok=PrimeQ[DivisorSigma[1, ds[[k]]]+DivisorSigma[1, ds[[-k]]]]), k++]; If[ok, AppendTo[t, n]]], {n, 2, 4000}]; t
PROG
(PARI) isok(n) = {fordiv(n, d, if (d^2 <= n, if (! isprime(sigma(d) + sigma(n/d)), return (0)); ); ); return(1); } \\ Michel Marcus, Jan 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 06 2017
STATUS
approved