login
Expansion of 1/(1 - Sum_{k>=2} x^(k^2)).
12

%I #7 May 03 2018 03:29:09

%S 1,0,0,0,1,0,0,0,1,1,0,0,1,2,0,0,2,3,1,0,3,4,3,0,4,8,6,1,5,14,10,4,7,

%T 22,20,10,12,32,39,20,21,49,70,42,37,79,116,88,65,129,193,174,122,207,

%U 326,320,238,333,551,575,463,555,914,1029,874,959,1502,1829,1621,1691,2486,3192,2989,3000,4172,5488

%N Expansion of 1/(1 - Sum_{k>=2} x^(k^2)).

%C Number of compositions (ordered partitions) of n into squares > 1.

%H Seiichi Manyama, <a href="/A280542/b280542.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%F G.f.: 1/(1 - Sum_{k>=2} x^(k^2)).

%e a(17) = 3 because we have [9, 4, 4], [4, 9, 4] and [4, 4, 9].

%t nmax = 75; CoefficientList[Series[1/(1 - Sum[x^k^2, {k, 2, nmax}]), {x, 0, nmax}], x]

%Y Cf. A000290, A006456, A078134.

%K nonn

%O 0,14

%A _Ilya Gutkovskiy_, Jan 05 2017