login
A280534
Number of partitions of n into two parts with the smaller part prime and the larger part squarefree.
2
0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 4, 1, 5, 3, 5, 2, 5, 2, 3, 2, 4, 4, 5, 3, 6, 4, 5, 4, 7, 5, 6, 4, 6, 5, 7, 3, 7, 6, 6, 3, 6, 5, 7, 3, 6, 4, 8, 4, 9, 4, 8, 4, 10, 5, 8, 3, 8, 6, 9, 4, 10, 5, 9, 6, 10, 5, 9, 5, 9, 6, 9, 5, 12, 6, 8, 6, 11, 8
OFFSET
1,8
COMMENTS
Number of distinct rectangles with squarefree length and prime width such that L + W = n, W <= L. For example, a(16) = 3; the rectangles are 2 X 14, 3 X 13 and 5 X 11. - Wesley Ivan Hurt, Nov 04 2017
FORMULA
a(n) = Sum_{i=1..floor(n/2)} c(i) * mu(n-i)^2, where mu is the Möbius function (A008683) and c = A010051.
MAPLE
with(numtheory): A280534:=n->add(mobius(n-i)^2*(pi(i)-pi(i-1)), i=1..floor(n/2)): seq(A280534(n), n=1..100); # Wesley Ivan Hurt, Jan 04 2017
MATHEMATICA
Table[Sum[MoebiusMu[n - k]^2 * (PrimePi[k] - PrimePi[k - 1]), {k, 1, Floor[n/2]}], {n, 1, 50}] (* G. C. Greubel, Jan 05 2017 *)
Table[Count[IntegerPartitions[n, {2}], _?(SquareFreeQ[#[[1]]]&&PrimeQ[ #[[2]]]&)], {n, 90}] (* Harvey P. Dale, Oct 17 2021 *)
PROG
(PARI) for(n=1, 50, print1(sum(k=1, floor(n/2), isprime(k)*(moebius(n-k))^2), ", ")) \\ G. C. Greubel, Jan 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jan 04 2017
STATUS
approved