Fibonachos

Nathan Fox

January 28, 2017

Theorem 1. The smallest number that requires n rounds of Fibonachos is $F(2 n+1)-n$.
Proof. The sum of the first n Fibonacci numbers is $F(n+1)-1$ (A000071). Clearly, every member of A000071 requires one round. Every other number j can be written as $j=$ $F(k)-m$ for some k where $F(k) \leq j$ and $m>1$. One round of Fibonachos will remove $F(k-1)-1$ nachos, reducing j to $F(k)-m-(F(k-1)-1)=F(k-2)-m+1$.

Now, suppose inductively that $F(2 n-1)-(n-1)$ is the smallest number requiring $n-1$ rounds. Let $F(2 n-1)-n-1<j \leq F(2 n+1)-n$. Then, write $j=F(k)-m$ as above. We must have $2 n-1 \leq k \leq 2 n+1$. After one round, we are left with $F(k-2)-m+1$ nachos. If $j=F(2 n+1)-n$, then $k=2 n+1$ and $m=n$, which makes this value $F(2 n-1)-(n-1)$. So, this value of j requires n rounds, as after 1 round it requires $n-1$ rounds. If $j<F(2 n+1)-n$, then the result after one round is less than $F(2 n-1)-(n-1)$. So, this value of j requires fewer than n rounds, as after 1 round it requires fewer than $n-1$ rounds.

Theorem 2. A280523(n) $=$ A215004 $(2 n-2)$
Proof. A215004 is defined by the recurrence $a(n)=a(n-1)+a(n-2)+\left\lfloor\frac{n}{2}\right\rfloor$. We wish to show that A215004 $(n)=F(n+3)-\left\lfloor\frac{n+3}{2}\right\rfloor$. This would cause A215004 $\left.2 n-2\right)=$ $F(2 n+1)-\left\lfloor\frac{2 n+1}{2}\right\rfloor=F(2 n+1)-n=\mathrm{A} 280523(n)$, as required.

We have $\mathrm{A} 215004(0)=1=2-1=F(3)-\left\lfloor\frac{3}{2}\right\rfloor$ and $\mathrm{A} 215004(1)=1=3-2=F(4)-\left\lfloor\frac{4}{2}\right\rfloor$. Inductively, suppose $\mathrm{A} 215004(k)=F(k+3)-\left\lfloor\frac{k+3}{2}\right\rfloor$ for $k<n$. Then,

$$
\begin{aligned}
\operatorname{A} 215004(n) & =\mathrm{A} 215004(n-1)+\mathrm{A} 215004(n-2)+\left\lfloor\frac{n}{2}\right\rfloor \\
& =F(n+2)-\left\lfloor\frac{n+2}{2}\right\rfloor+F(n+1)-\left\lfloor\frac{n+1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor \\
& =F(n+3)+\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n+1}{2}\right\rfloor-\left\lfloor\frac{n+2}{2}\right\rfloor .
\end{aligned}
$$

If n is even, then this is

$$
\begin{aligned}
F(n+3)+\frac{n}{2}-\frac{n}{2}-\frac{n+2}{2} & =F(n+3)-\frac{n+2}{2} \\
& =F(n+3)-\left\lfloor\frac{n+3}{2}\right\rfloor
\end{aligned}
$$

as required.
If n is odd, we instead have

$$
\begin{aligned}
F(n+3)+\frac{n-1}{2}-\frac{n+1}{2}-\frac{n+1}{2} & =F(n+3)-\frac{n+1}{2}-1 \\
& =F(n+3)-\left\lfloor\frac{n+3}{2}\right\rfloor
\end{aligned}
$$

as required.
Here is an alternative proof:
Proof. A215004 is defined by the recurrence $a(n)=a(n-1)+a(n-2)+\left\lfloor\frac{n}{2}\right\rfloor$. This is alternatively written as $a(n)=a(n-1)+a(n-2)+\frac{n}{2}+\frac{(-1)^{n}}{4}-\frac{1}{4}$. This is a nonhomogenous linear recurrence which can be solved by the Method of Undetermined Coefficients. Doing so (e.g. with Maple) yields a closed form for $a(n)$. Evaluating this closed form at $2 n-2$ gives a closed form for $a(2 n-2)$, and this is the same formula as the closed form for $F(2 n+1)-n$.

Looking at the entry for A215004, I think Theorem 2 was already known in some capacity.

