login
A280494
Rows of triangular table A280499 read in reverse order.
4
1, 1, 2, 1, 0, 3, 1, 0, 2, 4, 1, 0, 3, 0, 5, 1, 0, 0, 2, 3, 6, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 2, 0, 4, 8, 1, 0, 3, 0, 0, 0, 7, 0, 9, 1, 0, 0, 0, 3, 2, 0, 6, 5, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 2, 0, 3, 4, 6, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 7, 14, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 5, 0, 15
OFFSET
1,3
COMMENTS
This is GF(2)[X] analog of A127013, using "carryless division in base-2" instead of ordinary division.
EXAMPLE
The first 17 rows of the triangle:
1
1 2
1 0 3
1 0 2 4
1 0 3 0 5
1 0 0 2 3 6
1 0 0 0 0 0 7
1 0 0 0 2 0 4 8
1 0 3 0 0 0 7 0 9
1 0 0 0 3 2 0 6 5 10
1 0 0 0 0 0 0 0 0 0 11
1 0 0 0 0 0 2 0 3 4 6 12
1 0 0 0 0 0 0 0 0 0 0 0 13
1 0 0 0 0 0 0 2 0 0 0 0 7 14
1 0 0 0 0 0 0 0 0 0 3 0 5 0 15
1 0 0 0 0 0 0 0 2 0 0 0 4 0 8 16
1 0 3 0 0 0 0 0 0 0 0 0 5 0 15 0 17
PROG
(Scheme) (define (A280494 n) (A280500bi (A002024 n) (A004736 n))) ;; Code for A280500bi given in A280500.
CROSSREFS
Cf. A048720, A127013, A280499, A280500, A280493 (the row sums).
Sequence in context: A117362 A247492 A113214 * A168016 A342301 A029323
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jan 09 2017
STATUS
approved