This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280456 Expansion of Product_{k>=0} (1 + x^(6*k+1)). 8
 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 1, 3, 3, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 4, 5, 2, 0, 0, 1, 5, 7, 3, 0, 0, 1, 5, 8, 5, 1, 0, 1, 6, 10, 6, 1, 0, 1, 6, 12, 9, 2, 0, 1, 7, 14, 11, 3, 0, 1, 7, 16, 15, 5, 0, 1, 8, 19, 18, 7, 1, 1, 8, 21, 23, 10, 1, 1, 9, 24 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,21 COMMENTS Number of partitions of n into distinct parts congruent to 1 mod 6. Convolution of A281244 and A280456 is A098884. - Vaclav Kotesovec, Jan 18 2017 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015. FORMULA G.f.: Product_{k>=0} (1 + x^(6*k+1)). a(n) ~ exp(Pi*sqrt(n)/(3*sqrt(2)))/(2*2^(5/12)*sqrt(3)*n^(3/4)) * (1 + (Pi/(144*sqrt(2)) - 9/(4*sqrt(2)*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 18 2017 EXAMPLE a(32) = 3 because we have [31, 1], [25, 7] and [19, 13]. MATHEMATICA nmax = 105; CoefficientList[Series[Product[(1 + x^(6 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 6] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *) CROSSREFS Cf. A000700, A016921, A109701, A169975, A261612, A280454, A280457. Cf. A262928, A147599, A281243, A281244, A281245. Sequence in context: A284586 A281244 A284585 * A103633 A026821 A039964 Adjacent sequences:  A280453 A280454 A280455 * A280457 A280458 A280459 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 07:20 EDT 2018. Contains 316520 sequences. (Running on oeis4.)