%I
%S 4,9,4,25,55,49,9,25,49,121,253,49,529,129,121,125,515,133,961,121,25,
%T 529,1081,169,917,471,361,377,1711,121,2809,289,529,721,319,169,2831,
%U 1145,961,289,3403,497,49,529,361,1529,4811,289,841,781,1339,1369,5671,361
%N Least composite numbers k such that the least common multiples of their aliquot parts, each one increased by n, is lesser than k.
%C All terms are semiprimes or power of primes.
%H Paolo P. Lava, <a href="/A280441/b280441.txt">Table of n, a(n) for n = 0..165</a>
%e a(36) = 2831 because aliquot parts of 2831 are 1, 19, 149 and lcm(1 + 36, 19 + 36, 149 + 36) = lcm(37, 55, 185) = 2035 and 2831 is the least composite number to have this property.
%p with(numtheory): P:=proc(q) local a,h,k,n; for n from 0 to q do for k from 1 to q do
%p if not isprime(k) then a:=sort([op(divisors(k))]);
%p for h from 1 to nops(a)1 do a[h]:=a[h]+n; od; a:={op(a)}; a:=op(a minus {a[nops(a)]});
%p if lcm(a)<k then print(k); break; fi; fi; od; od; end: P(10^6);
%Y Cf. A000961, A001358.
%K nonn
%O 0,1
%A _Paolo P. Lava_, Jan 03 2017
