login
A280439
Number of n X 7 0..1 arrays with no element equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
20, 120, 236, 386, 574, 834, 1211, 1784, 2684, 4128, 6478, 10334, 16693, 27208, 44620, 73470, 121278, 200490, 331695, 548936, 908476, 1503260, 2486766, 4112326, 6797929, 11232984, 18554156, 30634874, 50561854, 83419218, 137578403
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6) for n>7.
Empirical g.f.: x*(20 + 40*x - 164*x^2 - 38*x^3 + 134*x^4 + 74*x^5 + 19*x^6) / ((1 - x)^2*(1 - x - x^2)^2). - Colin Barker, Feb 13 2019
EXAMPLE
Some solutions for n=4:
..0..0..1..0..1..0..1. .0..1..1..0..1..0..1. .0..0..1..1..0..0..1
..1..1..0..1..0..1..0. .0..1..0..1..0..1..0. .1..1..0..0..1..1..0
..0..0..1..0..1..0..1. .1..0..1..0..1..0..1. .0..0..1..1..0..1..0
..1..1..0..1..1..0..1. .0..1..0..1..0..1..0. .1..1..0..0..1..0..1
CROSSREFS
Column 7 of A280440.
Sequence in context: A121040 A044352 A044733 * A093566 A213223 A041770
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 03 2017
STATUS
approved