login
A280415
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 262", based on the 5-celled von Neumann neighborhood.
4
1, 3, 4, 14, 17, 57, 65, 227, 260, 910, 1025, 3585, 4097, 14337, 16385, 57345, 65537, 229377, 262145, 917505, 1048577, 3670017, 4194305, 14680065, 16777217, 58720257, 67108865, 234881025, 268435457, 939524099, 1073741824, 3758096384, 4294967296, 15032385536
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, May 05 2024: (Start)
a(n) = 4*a(n-2) for n > 31.
G.f.: (12*x^31 + 4*x^30 + x^29 + 3*x^28 + 3*x^27 + 3*x^26 + 3*x^25 + 3*x^24 + 3*x^23 + 3*x^22 + 3*x^21 + 3*x^20 + 3*x^19 + 3*x^18 + 3*x^17 + 3*x^16 + 3*x^15 + 3*x^14 + 3*x^13 + 3*x^12 + 55*x^11 + 15*x^10 - 2*x^9 + x^7 + 3*x^6 - x^5 - x^4 - 2*x^3 - 3*x - 1)/(4*x^2 - 1). (End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 262; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 02 2017
STATUS
approved