login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280340 a(n) = a(n-1) + 10^n * a(n-2) with a(0) = 1 and a(1) = 1. 3
1, 1, 101, 1101, 1011101, 111111101, 1011212111101, 1112122222111101, 101122323232322111101, 1112223344434333322111101, 1011224344546565545343322111101, 111223345667777878776655443322111101, 1011224455769911213121200887756443322111101 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Rogers-Ramanujan continued fraction is defined by R(q) = q^(1/5)/(1+q/(1+q^2/(1+q^3/(1+ ... )))). The limit of a(n)/A015468(n+2) is 10^(-1/5) * R(10).

a(n) has A004652(n+1) digits.  The last n digits are the same as the last n digits of a(n-1). - Robert Israel, Jan 12 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..62

Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction

FORMULA

a(n) a(n-3) = 10 a(n-2) a(n-1) - 10 a(n-2)^2 + a(n-1) a(n-3). - Robert Israel, Jan 12 2017

EXAMPLE

1/1 = a(0)/A015468(2).

1/(1+10/1) = 1/11 = a(1)/A015468(3).

1/(1+10/(1+10^2/1)) = 101/111 = a(2)/A015468(4).

1/(1+10/(1+10^2/(1+10^3/1))) = 1101/11111 = a(3)/A015468(5).

MAPLE

A[0]:= 1: A[1]:= 1:

for n from 2 to 20 do A[n]:= A[n-1]+10^n*A[n-2] od:

seq(A[i], i=0..20); # Robert Israel, Jan 12 2017

MATHEMATICA

RecurrenceTable[{a[0]==a[1]==1, a[n]==a[n-1]+10^n a[n-2]}, a, {n, 15}] (* Harvey P. Dale, Jul 12 2020 *)

CROSSREFS

Cf. A004652, A015468, A128915.

Cf. similar sequences with the recurrence a(n-1) + q^n * a(n-2) for n>1, a(0)=1 and a(1)=1: A280294 (q=2), A279543 (q=3), this sequence (q=10).

Sequence in context: A048177 A283504 A267270 * A283589 A284403 A267350

Adjacent sequences:  A280337 A280338 A280339 * A280341 A280342 A280343

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Dec 31 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 18:40 EDT 2020. Contains 337386 sequences. (Running on oeis4.)