login
A280326
Primes such that the previous prime plus the next prime minus 1 is also prime.
1
11, 17, 23, 29, 37, 41, 59, 67, 71, 73, 83, 89, 101, 107, 131, 137, 157, 179, 191, 211, 233, 311, 317, 331, 337, 359, 419, 431, 443, 461, 467, 479, 521, 523, 541, 547, 557, 599, 607, 613, 617, 631, 683, 701, 727, 743, 751, 757, 809, 881, 887, 953, 991, 997, 1013, 1031, 1033, 1039, 1049, 1061, 1063
OFFSET
1,1
COMMENTS
Intersection with A280266: 37, 73, 89, 137, 521, 523, 727, 809, 1013, ..., .
Primes that are missing from the union with A280266: 2, 3, 103, 109, ..., .
LINKS
EXAMPLE
17 is in the sequence since 13 + 19 - 1 = 31 which is the eleventh prime.
MATHEMATICA
fQ[p_] := PrimeQ[ NextPrime[p, -1] + NextPrime[ p] -1]; Select[ Prime@ Range[2, 170], fQ]
PROG
(Sage)
max_next_p = 1000
seq = []
prev_p = nth_prime(1)
p = nth_prime(2)
for next_p in primes(nth_prime(3), max_next_p):
if is_prime(prev_p + next_p - 1):
seq.append(p)
prev_p = p
p = next_p
print(seq)
CROSSREFS
Cf. A280266.
Sequence in context: A175888 A209624 A243153 * A160129 A275682 A265402
KEYWORD
nonn,easy
AUTHOR
STATUS
approved