OFFSET
1,1
COMMENTS
LINKS
Eric Weisstein's World of Mathematics, Partition Function P, Partition Function Q
EXAMPLE
6 is in the sequence because we have:
----------------------------------
number of partitions = 11 (is odd)
----------------------------------
6 = 6
5 + 1 = 6
4 + 2 = 6
4 + 1 + 1 = 6
3 + 3 = 6
3 + 2 + 1 = 6
3 + 1 + 1 + 1 = 6
2 + 2 + 2 = 6
2 + 2 + 1 + 1 = 6
2 + 1 + 1 + 1 + 1 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6
------------------------------------------------------
number of partitions into distinct parts = 4 (is even)
------------------------------------------------------
6 = 6
5 + 1 = 6
4 + 2 = 6
3 + 2 + 1 = 6
MATHEMATICA
Select[Range[160], Mod[PartitionsP[#1], 2] == 1 && Mod[PartitionsQ[#1], 2] == 0 & ]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 31 2016
STATUS
approved