%I #17 Jan 03 2017 03:03:02
%S 3,5,23,41,59,113,131,173,179,269,281,383,401,431,443,449,461,479,521,
%T 641,653,863,929,941,953,1013,1103,1163,1301,1319,1361,1439,1481,1559,
%U 1583,1871,2003,2213,2309,2411,2609,2693,2711,2729,2801,2903,2909,2969,3041
%N Primes p such that 8p^2 - 7p + 2 is also prime.
%C For any p in this sequence, 2*p*(8p^2 - 7p + 2) has the same nonzero digits as its prime factors in base 2*p-1.
%C Apart from 3 itself, all members of this sequence are congruent to 2 (mod 3). This is because for any number congruent to 1 (mod 3), the expression (8n^2 - 7n + 2) would be a multiple of 3 and hence not prime.
%H Ely Golden, <a href="/A280273/b280273.txt">Table of n, a(n) for n = 1..1000</a>
%t Select[Prime@ Range@ 450, PrimeQ[8 #^2 - 7 # + 2] &] (* _Michael De Vlieger_, Dec 30 2016 *)
%o (SageMath)
%o c=1
%o index=1
%o while(index<=1000):
%o if((is_prime(c))&(is_prime(8*(c**2)-7*c+2))):
%o print(str(index)+" "+str(c))
%o index+=1
%o c+=1
%o print("complete")
%K nonn
%O 1,1
%A _Ely Golden_, Dec 30 2016