login
A280251
Sum of the larger parts of the partitions of 2n into two squarefree parts.
4
1, 5, 8, 18, 12, 34, 31, 63, 56, 88, 83, 129, 91, 138, 103, 195, 173, 303, 199, 345, 256, 442, 274, 482, 294, 525, 410, 539, 487, 668, 517, 714, 539, 913, 675, 1150, 776, 1131, 755, 1223, 783, 1406, 898, 1551, 1163, 1605, 1191, 1774, 1271, 1875, 1378, 2031, 1521, 2547
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n} (2*n-i) * mu(i)^2 * mu(2*n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280252(n) - A280250(n).
MAPLE
with(numtheory): A280251:=n->sum((2*n-i)*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280251(n), n=1..100);
MATHEMATICA
Table[Total[Select[IntegerPartitions[2 n, {2}], AllTrue[#, SquareFreeQ]&][[;; , 1]]], {n, 60}] (* Harvey P. Dale, Apr 22 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 29 2016
STATUS
approved